Porous silicon nitride ceramic phosphors

CHIHIRO KAWAI

Electronics & Materials R&D Laboratories, Sumitomo Electric Industries, Ltd., 1-1-1, Koya-Kita, Itami, Hyogo 664-0016, Japan

Luminescent materials have been used in a variety of display devices such as cathode ray tube, plasma display and field emission display. There also has been an application to the phosphors of light emitting diodes. Although most of the phosphors that have been used are oxides, sulfides and oxysulfides doped with rare earth or metal ions, they are not always sufficient with respect to chemical resistance and thermal resistance.

Nitride or oxynitride ceramics such as $Si₃N₄$ [1] and SiAlON [2] are well known excellent structural materials due to their high strength and high thermal and chemical resistances. Recently, α -SiAlON ceramics has been reported as possible phosphors, [3–6] and $LaSi₃N₅$ [7] and $Ba₂Si₅N₈$ [8] phosphors have been reported as $Si₃N₄$ -based luminescent ceramics. In these phosphors, rare earth ions as luminescent centers, for example, Eu^{2+} and Eu^{3+} , are doped into interstitial sites in the host ceramics.

To our knowledge, however, there are few reports on luminescent $Si₃N₄$ ceramics because there are no sites where rare earth ions can be accommodated in the crystal structures of both α -Si₃N₄ and β -Si₃N₄. In general, $Si₃N₄$ sintered ceramics are produced by sintering powder mixtures of $Si₃N₄$ and sintering aids such as Y_2O_3 and Al_2O_3 . The resulting sintered Si_3N_4 ceramics are densified and have the combined microstructure of $Si₃N₄$ grains and $SiO₂$ -Al₂O₃-Y₂O₃ grain boundaries. Therefore, if the grain boundary phase were luminescent, the $Si₃N₄$ sintered ceramics would be used as a phosphor.

Various yttrium silicates and yttrium silicon oxynitrides such as Y_2SiO_7 [9] and $Y_2Si_3N_4O_3$ [10] are well known as the host materials of phosphors. For example, Krevel *et al.* reported that a Ce-doped $Y_2Si_3N_4O_3$ showed a broadband emission with a maximum peak at about 500 nm [10].

We have developed high strength porous $Si₃N₄$ ceramics with a particular microstructure where elongated β -Si₃N₄ grains are connected at random in three dimensions via an Si-Er-O-N grain boundary phase. The porous $Si₃N₄$ ceramics can be fabricated by sintering powder compacts of $α$ -Si₃N₄ and Er₂O₃ as a sintering aid.

In this work, we focused on the porous $Si₃N₄$ ceramics including oxynitride grain boundary phases as a possible phosphor. In this paper, we report the fabrication of rare earth-doped porous $Si₃N₄$ ceramics and their luminescent properties.

Alpha-Si3N4 (99.9%, SN-E10, Ube Co. Ltd., Tokyo Japan) and various rare earth oxides $(Y_2O_3, Eu_2O_3,$ Tm_2O_3 , Gd_2O_3 and Tb_4O_7 , 99.9%, prod. by Shin-etsu

Chemical Co.) were used as the starting powders. The powder mixtures of α -Si₃N₄ and small amounts of Y_2O_3 -based composite oxides as sintering aids were pressed to the dimensions of 12 mm in diameter and 5 mm thick. The total amount of the sintering aids was adjusted at 8% by weight versus Si₃N₄ powder. The RE (Eu, Tm, Gd or Tb) contents of Y_2O_3 -based sintering aids were varied from 0 to 100%. The resulting powder compacts were sintered at a temperature of 1800 °C for 2 hr in a pressurized N_2 atmosphere of 0.3 MPa. Thus, porous $Si₃N₄$ sintered bodies having different grain boundary phases were fabricated.

Crystalline phases were identified by X-ray diffraction. The microstructure of the fracture surfaces of the sintered bodies was observed with a scanning electron microscope (SEM). Emission spectra were measured at room temperature using a fluorescent spectrophotometer (Model F-4500, Hitachi).

Fig. 1 shows typical SEM micrographs of porous $Si₃N₄$ sintered bodies fabricated with various sintering aids. All the sintering aids promoted the anisotropic grain growth of columnar grains. There was no significant difference in microstructure among their specimens, and also the specimens had high porosity of 41 to 51%.

Fig. 2 shows the X-ray diffraction diagrams of Y/Eu co-doped specimens. It is found that the specimen sintered with 100% Y_2O_3 consists of β -Si₃N₄ and $Y_2Si_3N_4O_3$, where Y^{3+} ions are present as the secondary phase. There is no significant change of the Xray diffraction diagrams when E_2O_3 is added to the sintering aid. Also in the specimen with 100% Eu₂O₃, almost all the peaks appear at the same positions as those of the specimen with 100% Y_2O_3 . The secondary phase in the specimen with 100% Eu₂O₃ is possibly $Eu_2Si_3N_4O_3$ although we cannot identify their peaks due to no data of the compound in the up-to-date powder diffraction data files (ICDD 2000). Several unidentified peaks were also seen in the diagrams, and their relative intensity was almost equivalent in the specimens with 20% Eu₂O₃ and 100% Eu₂O₃ (for example, the relative peak intensity I/I_0 values of peaks at 35° (2 θ) were the same). These unidentified phases are possibly trace amounts of europium silicates such as $Eu₂SiO₄$ and $Eu_3Si_2O_7$. However, they could not be determined in the present work.

Fig. 3 shows the emission spectra of the Y/Eu codoped specimens. The specimens have broadband emissions with maximum peaks at a constant λ value of 451 nm, independent of Eu concentration, and the

Figure 1 Typical SEM micrographs of porous Si₃N₄ ceramics sintered with: (a) Y₂O₃, (b) Eu₂O₃, (c) Tm₂O₃, (d) Gd₂O₃ and (e) Tb₄O₇ as sintering aids.

Figure 2 X-ray diffraction diagrams Y/Eu co-doped porous $Si₃N₄$ ceramics with various Eu/(Eu + Y) values: \circ : β -Si₃N₄, \Box : Y₂Si₃N₄O₃, and \triangle : unidentified.

Figure 3 Emission spectra of the Y/Eu co-doped porous $Si₃N₄$ ceramics.

luminescence intensity increases with increasing Eu content.

 $Y_2Si_3N_4O_3$ oxynitride should show no emission because Y^{3+} ion does not have any 4f and 5d electrons. Nevertheless, the specimen sintered with 100% Y₂O₃ also shows blue emission even though its intensity is weak. At the current stage, a possible cause for this emission is explained by impurities in the starting powder, especially the other rare earth ions in Y_2O_3 .

No remarkably sharp line emission peaks of Eu^{3+} are observed in the spectra, indicating the reduction of Eu^{3+} to Eu^{2+} because of sintering atmosphere of N_2 . The energy level scheme of Eu^{2+} has been known for long [11]. In the emission spectra, either sharp 4f-4f transitions or very broad band emission due to 5d-4f transitions are observed depending on the fact that how large the ligandfield splitting of 5d-levels is $[12]$

We discussed whether the luminescence of the unidentified phases formed with $Y_2Si_3N_4O_3$ was attributed to the overall luminescence of specimens or not. However, we consider that the broadband emissions are assigned to the $5d¹4f⁶-4f⁷$ transitions in $Y_2Si_3N_4O_3$: Eu phosphors because the peak intensity of the unidentified phases does not vary with increasing Eu content (see Fig. 2b and c).

Fig. 4 shows an emission spectrum of a Tb-doped specimen sintered with 100% Tb₃O₄. Special sharp line emissions characteristic of Tb^{3+} are observed at λ values of 489, 545, 585 and 623 nm. According to the energy levels of the 4f-4f transitions [13], these

Figure 4 Emission spectrum of a Tb-doped porous $Si₃N₄$ ceramic sintered with 100% Tb₃O₄.

emissions can be assigned to the following 4f-4f transitions: 5D_4 → 7F_6 (\sim 490 nm), 5D_4 → 7F_5 (\sim 545 nm), ${}^{5}D_4 \rightarrow {}^{7}F_4$ (~590 nm) and ${}^{5}D_4 \rightarrow {}^{7}F_3$ (~620 nm). The reason for broadband emission around 450 nm is probably the same as those in the specimen sintered with 100% Y2O3.

The luminescence characterization of specimens sintered with Gd_2O_3 and Tm_2O_3 is under consideration.

References

- 1. M. YOSHIMURA, T. NISHIOKA, A. YAMAKAWA and M. MIYAKE, *J. Ceram. Soc. Jpn.* **103**(4) (1995) 407.
- 2. G. Z. CAO and R. METSELAAR, *Chem. Mater.* **3**(2) (1991) 242.
- 3. B. S. B. KARUNARATNE, R. J. LUMBY and M. H. LEWS , *J. Mater. Res*. **11**(11) (1996) 2790.
- 4. H. MUNDAI and M. HOFFMANN, *J. Am. Ceram. Soc.* **82**(1) (1996) 229.
- 5. Z. SHEN, M. NYGREN and U. HALENIUS , *J. Mater. Sci. Lett.* **16** (1997) 263.
- 6. R.-J. XIE, M. MITOMO, K. UHEDA, F.-F. XU and Y. AKIMUNE, *J. Am. Ceram. Soc.* **85**(5) (2002) 1229.
- 7. K. UHEDA, H. TAKIZAWA, T. ENDO, H. YAMANE, M. SHIMADA, C.-M. WANG and M. MITOMO, *J. Lumi.* **87–89** (2000) 967.
- 8. H. A. HOPPE, H. LUTZ, P. MORYS, W. SCHNICK and A. SEILMEIER, *J. Phys. Chem. Solids* **61** (2000) 2001.
- 9. P. J. BORN, D. S. ROBERTSON and P. C. SMITH, *J. Mater. Sci. Lett.* **4** (1985) 497.
- 10. J. W. H. KREVEL, H. T. HINTZEN and R. MEIJERINK, *J. Alloys. Compo.* **268** (1998) 272.
- 11. H. N. RUSSEL, W. ALBERTSON and D. N. DAVIS , *Phys. Rev.* **60** (1941) 641.
- 12. B. GLASSE, *Phys. Status Solidi* **B 55** (1973) K131.
- 13. G. H. DIEKE and H. M. CROSSWHITE, *Appl. Opt.* **2**(7) (1963) 675.

Received 11 August

and accepted 7 October 2004